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Abstract5

Rare class problems are common in real-world applications across a wide range of domains. Stan-6

dard classification algorithms are known to perform poorly in these cases, since they focus on7

overall classification accuracy. In addition, we have seen an explosion of data in recent years,8

resulting in many large scale rare class problems. In this paper, we consider nonlinear kernel9

based classification methods expressed as a regularized loss minimization problem. We address10

challenges associated with both rare class problems and large scale learning, by 1) optimizing area11

under curve of the receiver of operator characteristic in the training process, instead of classifica-12

tion accuracy and 2) using a rare class kernel representation to achieve an efficient time and space13

algorithm. We call our algorithm RankRC. We provide heuristic and theoretical justification for14

the rare class representation, and experimentally illustrate the effectiveness of RankRC in both test15

performance and computational complexity on several datasets.16

Keywords: rare class, large scale, nonlinear kernel, receiver operator characteristic, ranking svm17

1. Introduction18

In many classification problems samples from one class are extremely rare (the minority class),19

while the number of samples belonging to the other class are plenty (the majority class). This20

situation is known as the rare class problem. It is also referred to as an unbalanced or skewed21

class distribution problem. Rare class problems naturally arise in several application domains,22

for example, fraud detection, customer churn, intrusion detection, fault detection, credit default,23

insurance risk and medical diagnosis.24

Standard classification methods perform poorly when dealing with unbalanced data, e.g. sup-25

port vector machines (SVM) [1, 2, 3], decision trees [4, 5, 1, 6], neural networks [1], Bayesian26

networks [7], and nearest neighbor methods [4, 8]. Most classification algorithms are driven by ac-27

curacy (i.e. minimizing error). Since minority examples constitute a small proportion of the data,28
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they have little impact on accuracy or total error. Thus majority examples overshadow the minor-29

ity class, resulting in models which are heavily biased in recognizing the majority class. Also,30

errors from different classes are assumed to have the same costs, which is usually not true. In most31

problems, incorrect classification of the rare class is more expensive, for instance, diagnosing a32

malignant tumor as benign has more severe consequences than the contrary case.33

Solutions to the class imbalance problem have been proposed at both the data and algorithm34

level. At the data level, various resampling techniques are used to balance class distribution,35

including random under-sampling of majority class instances [9], over-sampling minority class36

instances with new synthetic data generation [10], and focused resampling, in which samples37

are chosen based on additional criteria [8]. Although sampling approaches have been showed38

to achieve success in some applications, they are known to have drawbacks, for instance under-39

sampling can eliminate useful information, while over-sampling can result in overfitting. At the40

algorithm level, solutions are proposed by adjusting the algorithm itself. This usually involves ad-41

justing the costs of the classes to counter the class imbalance (cost-sensitive learning) or adjusting42

the decision threshold. However, true error costs are often unknown and using an inaccurate cost43

model can lead to additional bias.44

In this paper we focus on nonlinear kernel based classification methods expressed as a regu-45

larized loss minimization problem. In recent years, we have seen an explosion of data, resulting46

in many large scale rare class problems. For example, detecting unauthorized use of a credit card47

from millions of transactions. Processing large datasets can be prohibitive for many nonlinear ker-48

nel algorithms, which scale quadratically to cubically in the number of examples and may require49

quadratic space as well.50

To address the challenges associated with rare class problems and large scale learning we51

propose the following:52

1. Instead of maximizing accuracy (minimizing error), we optimize area under curve (AUC)53

of the receiver operator characteristic. The AUC overcomes inadequacies of accuracy for54

unbalanced problems and provides a skew independent measure. It is often used as the eval-55

uation metric for unbalanced problems and therefore it is appropriate to directly optimize56

it in the training process. This results in a regularized biclass ranking problem, which is a57

special case of RankSVM with two ordinal levels [11].58

2. To solve a kernel RankSVM problem in the dual, as originally proposed in [11], requires59

O(m6) time and O(m4) space, where m is the number of data samples. Recently, Chapelle and60

Keerthi [12] proposed a primal approach to solve RankSVM, which results in O(m3) time61

and O(m2) space, for nonlinear kernels. We propose a modification to kernel RankSVM, that62

takes specific advantage of the unbalanced nature of the problem, to achieve O(mm+) time63

and O(mm+) space, where m+ is the number of rare class examples. The idea is to restrict64

the solution to a linear combination of rare class kernel functions. We call it RankRC, since65

it enforces a rare class representation. We present heuristic and theoretical justification66

for this choice. Specifically, we show RankRC is optimal with respect to RankSVM for67

skewed data when a subset of kernel functions are used. We also draw connections to the68

Nyström approximation method. Several of our results are general and can be applied to69

other regularized loss minimization problems.70
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The rest of the paper is organized as follows. Sections 2 and 3 review the AUC measure and71

RankSVM. Section 4 develops the RankRC problem. Section 5 outlines the optimization method72

used to solve RankRC. Section 6 empirically compares RankRC with other kernel methods on73

several datasets. Finally, Section 7 concludes with summary remarks and potential extensions.74

2. ROC Curve75

Evaluation metrics play an important role in learning algorithms. They provide ways to76

assess performance as well as guide modeling. For classification problems, error rate is the77

most commonly used metric. For simplicity, we will consider the two-class case. Let D =78

{(x1,y1), (x2,y2), ..., (xm,ym)} be a set of m training examples, where xi ∈ X ⊆ Rd , yi ∈ {+1,−1}.79

Denote f (x) as the inductive hypothesis obtained by training on example set D. Then error rate is80

defined as,81

ErrorRate =
1
m

m∑
i=1

I[ f (xi) 6= yi] , (1)

where I[p] denotes the indicator function and is equal to 1 if p is true, 0 if p is false. However, for82

highly unbalanced datasets, error rate is not appropriate since it can be biased toward the majority83

class [13, 14, 15, 16]. In this paper, we follow convention and set the minority class as positive and84

the majority class as negative. Consider a dataset that has 1 percent positive cases and 99 percent85

negative ones. A naive solution which assigns every example to be positive will obtain only 186

percent error rate. Indeed, classifiers that always predict the majority class can obtain lower error87

rates than those that predict both classes equally well. But clearly these are not useful hypotheses.88

Classification performance can be represented by a confusion matrix as in Table 1, with m+89

denoting the number of majority examples and m− the number of minority ones. The proportion90

of the two rows reflects class distribution and any performance measure that uses values from both91

rows will be sensitive to class skew.92

Predicted
f (x) = +1 f (x) = −1 Total

Actual
y = +1 True Positives (TP) False Positives (FP) m+

y = −1 False Negatives (FN) True Negatives (TN) m−

Table 1: Add caption

The Receiver Operating Characteristic (ROC) can be used to obtain a skew independent mea-93

sure [13, 17, 18]. Most classifiers intrinsically output a numerical score and a predicted label is94

obtained by thresholding the score. For example, a threshold of zero leads to taking the sign of the95

numerical output as the label. Each threshold value generates a confusion matrix with different96

quantities of false positives and negatives. The ROC graph is obtained by plotting the true posi-97

tive rate (number of true positives divided by m+) against the false positive rate (number of false98
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positives divided by m−) as the threshold level is varied (see Figure 1). It depicts the trade-off99

between benefits (true positive) and costs (false positives) for different choices of the threshold.100

Thus it does not depend on a priori knowledge of the costs associated with misclassification. A101

ROC curve that dominates another provides a better solution at any cost point.102
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Figure 1: Example ROC curves. Curve A dominates B and curve B dominates C. Curve C has an
AUC of 0.5 and indicates a model with no discriminative value.

To facilitate comparison, it is convenient to characterize ROC curves using a single measure.103

The area under a ROC curve (AUC) can be used for this purpose. It is the average performance of104

the model across all threshold levels and corresponds to the Wilcoxon rank statistic [19]. The AUC105

can be obtained by forming the ROC curve and using the trapezoid rule to compute area. Also,106

given the intrinsic output of a hypothesis, f (x), we can directly compute the AUC by counting107

pairwise correct rankings [20]:108

AUC =
1

m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

I
(

f (xi)> f (x j)
)
. (2)

Incorporating the AUC in the modeling process leads to a biclass ranking problem, as discussed109

in the following section.110

3. RankSVM111

The modeling process can usually be expressed as an optimization problem involving a loss112

function and a penalty on complexity (e.g. regularization term). For most classification problems,113

since the performance measure is error rate, it is natural to consider minimizing the empirical114

error rate (1) as the loss function. In practice, I[·] is often replaced with a convex approximation115

such as the hinge loss, logistic loss or exponential loss [21]. Specifically, using the hinge loss,116

`h(z) = max(0,1−z),with `2-regularization leads to the well known support vector machine (SVM)117

formulation [22, 23],118
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min
w∈Rd

1
m

m∑
i=1

`h
(
yiwT xi

)
+
λ

2
‖w‖2

2 , (3)

where λ ∈ R+ is a parameter that controls complexity and the hypothesis, f (x) = wT x, is assumed119

linear in the input space X . Since SVMs try to minimize error rate, they can lead to ineffective120

class boundaries when dealing with highly skewed datasets, with resulting solutions biased toward121

the majority concept [3]. The literature contains several approaches to remedy this problem. Most122

prevalent are sampling methods and cost-sensitive learning. However, these approaches explicitly123

or implicitly fix the relative costs of misclassification. When the true costs are unknown, this can124

lead to suboptimal solutions.125

Instead of minimizing error rate, we consider optimizing AUC as a natural way to deal with126

imbalance. Indeed, if we measure performance using AUC, it is preferable to optimize this quan-127

tity directly during the training process. In the AUC formula given in (2), we replace I[·] with the128

hinge loss to obtain a convex ranking loss function. Thus we solve the following regularized loss129

minimization problem:130

min
w∈Rd

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`h
(
wT xi − wT x j

)
+
λ

2
‖w‖2

2 . (4)

Problem (4) is a special case of RankSVM proposed by Herbrich et al. [11] with two ordinal131

levels. Like SVM, RankSVM leads to a dual problem which can be expressed in terms of dot-132

products between input vectors. This allows us to obtain a non-linear function through the kernel133

trick [22], which consists of using a kernel function, k : X ×X → R, that corresponds to a feature134

map, φ : X → F ⊆ Rd′ , such that ∀u,v ∈ X , k(u,v) = φ(u)Tφ(v). Here, k directly computes the135

inner product of two vectors in a potentially high-dimensional feature space F , without the need136

to explicitly form the mapping. Consequently, we can replace all occurrences of the dot-product137

with k in the dual and work implicitly in space F .138

However, since there is a Lagrange multiplier for each constraint associated with the hinge loss,139

the dual formulation leads to a problem in m+m− = O(m2) variables. Assuming the optimization140

procedure has cubic complexity in the number of variables, the complexity of the dual method141

becomes O(m6), which is unreasonable for even medium sized datasets.142

As noted by Chapelle [24], Chapelle and Keerthi [12], we can also solve the primal problem143

in the implicit feature space due to the Representer Theorem [25, 26]. This theorem states that the144

solution of any regularized loss minimization problem in F can be expressed as a linear combina-145

tion of kernel functions evaluated at the training samples, k(xi, ·), i = 1, ...,m. Thus, the solution of146

(4) in F can be written as:147

w =
m∑

i=1

βik(xi, ·) , and f (x) =
m∑

i=1

βik(xi,x) . (5)
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Substituting (5) in (4) we can express the primal problem in terms of β:148

min
β∈Rm

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`h

(
m∑

r=1

βrk(xr,xi) −

m∑
r=1

βrk(xr,x j)

)
+
λ

2

m∑
i, j=1

βiβ jk(xi,x j) ,

or more simply,149

min
β∈Rm

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`h

(
βT Ki −βT K j

)
+
λ

2
βT Kβ , (6)

where K ∈ Rm×m is the kernel matrix, Ki j = k(xi,x j), and Ki denotes the ith row of K. To be able150

to solve (6) using unconstrained optimization methods such as gradient descent, we require the151

objective to be differentiable. We replace the hinge loss, `h, with an ε-smoothed differentiable
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Figure 2: The smoothed hinge is a differentiable approximation of the hinge loss. Here the
smoothed hinge is shown with ε = 0.5.

152
approximation, `ε, defined as,153

`ε(z) =


(1 − ε) − z if z< 1 − 2ε
1
4ε (1 − z)2 if 1 − 2ε≤ z< 1
0 if z≥ 1 ,

which transitions from linear cost to zero cost using a quadratic segment (see Figure 2) and pro-154

vides similar benefits as the hinge loss. Now we can solve (6) using standard unconstrained opti-155

mization techniques. Since there are m variables, Newton’s method would for example take O(m3)156

operations to converge.157
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RankSVM is popular in the information retrieval community, where linear models are the norm158

[e.g. see 27]. For a linear model, with d-dimension input vectors, the complexity of RankSVM159

can be reduced to O(md + m logm) [12]. However, many rare class problems require a nonlinear160

function to achieve optimal results. But solving a nonlinear RankSVM in O(m3) time may not be161

practical for mid- to large-sized datasets. Moreover, the method requires O(m2) space to store the162

kernel matrix. We believe this complexity is, in part, the reason why nonlinear RankSVMs are not163

commonly used to solve rare class problems.164

In the next section we propose a modification to nonlinear RankSVMs that takes specific ad-165

vantage of the unbalanced nature of the problem to achieve O(mm+) time and O(mm+) space, while166

not sacrificing performance.167

4. RankRC: Ranking with Rare Class Representation168

For highly unbalanced datasets, to make SVM computational feasible for large scale problems,169

we propose a rare class (RC) based method. Specifically we propose a RC based method, which170

restricts the solution to the form171

f (x) =
∑
{i:yi=+1}

βik(xi,x) , (7)

so it consists only of kernel function realizations of the minority class.172

Next we present motivate form (7) by assuming specific properties of the class conditional173

distributions and kernel function. Zhu et al. [28] make use of similar assumptions, however, in174

their method they attempt to directly estimate the likelihood ratio. In contrast, we use a regularized175

loss minimization approach.176

Recall that the optimal ranking function for a classification problem is the posterior probability,177

P(y = 1|x), since it minimizes the Bayes risk for arbitrary costs. From Bayes’ Theorem, we have178

P(y = 1|x) =
P(y = 1)P(x|y = 1)

P(y = 1)P(x|y = 1) + P(y = −1)P(x|y = −1)
. (8)

Any monotonic transformation of (8) also yields equivalent ranking capability. Dividing the nu-179

merator and denominator of (8) by P(y = −1)P(x|y = −1), we note that P(y = 1|x) is a monotonic180

transformation of the likelihood ratio, denoted as181

f (x) =
P(x|y = 1)

P(x|y = −1)
, (9)

which is the ranking function we wish to obtain. Now, if we assume that the conditional density,182

P(x|y = 1), is a mixture of m+ identical spherical normals centered at the rare class examples, we183

can write184
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P(x|y=1)

P(x|y=−1)

Approximately
constant locally

(b)

Figure 3: (a) An example of a rare class dataset. Red ‘·’s indicate negative (majority) examples and
black ‘+’s indicate positive (minority) examples. (b) The class conditional distributions showing
that P(x|y = −1) is relatively constant in local neighborhood of positive examples.

P(x|y = 1) =
∑
{i:yi=+1}

ai exp
{
||xi − x||2

σ2

}
,

for some constants ai. This mixture encompasses a large range of possible distributions from the185

m+ rare examples provided. If we also assume that k denotes a Gaussian kernel function with186

width σ, then we have187

P(x|y = 1) =
∑
{i:yi=+1}

aik(xi,x) .

Observe that in rare class problems most examples are from the majority class (y = −1) and only188

a small number are from the rare class (y = +1). Therefore it is reasonable to assume P(x|y = −1)189

is locally constant in a neighborhood around the minority class examples, see Figure 3 for an190

illustration. Let P(x|y = −1) ≈ ci for each minority example i in the neighbourhood of xi.3 Then191

(9) can be written as,192

f (x)≈
∑
{i:yi=+1}

aik(xi,x)
ci

,

3We do not make this more precise since we are mainly interested in motivating an approximate form.
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which corresponds to the rare class representation (7) we have chosen. If the assumptions made193

are relaxed, we may still expect the rare class representation to perform reasonably well.194

For any general regularized loss minimization problem with any loss function L : Rm→R, we195

can consider a corresponding rare class regularization problem. Assume that a penalty parameter196

λ ∈ R+ is given, a regularized loss minimization problem can be described as197

min
w∈Rd′

L ( f (x1), ..., f (xm)) +
λ

2
‖w‖2

2 , (10)

where f : X → R is a linear hypothesis in feature space, f (x)) = wTφ(x). Here L(·) is any loss198

function including both standard SVM and ranking SVM functions, since SVM-Rank is equivalent199

to a 1-class SVM on an enlarged dataset with the set of points P = {φ(xi) −φ(x j) : yi > y j, i, j =200

1...,m}. From the Representer Therorem, a solution vector w ∈ S = span{φ(xi) : i = 1, ...,m} can201

be expressed in terms of all the given training points in the feature space.202

Using the restricted hypothesis (7), we consider the following constrained regularized ranking203

problem,204

min
β∈RR

L ( f (x1), ..., f (xm)) +
λ

2
βT KRRβ ,

subject to f (x) =
∑
i∈R

βik(xi,x) (11)

whereR⊆{1, ...,m}. The proposed ranking with a rare class representation, subsequently referred205

to as RankRC, is a special case of (11) withR = {i : yi = 1}.206

In order to see potential advantages of RankRC, we compare the full data set regularized SVM207

ranking problem208

min
β∈Rm

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`h
(

f (xi) − f (x j)
)

+
λ

2
βT Kβ

subject to f (x) =
m∑

i=1

βik(xi,x) (12)

with the subset data regularization problem (11).209

Applying Theorem 2 in [? ], we can establish the following theoretical result.210

Theorem 1. Let f ∗(x) be the optimal hypothesis of the full data set SVM-Rank problem (12) under211

the feature mapping φ : X →F and f̄ ∗(x) be the optimal hypothesis for the subset data set SVM-212

Rank problem (11) where R⊆ {1, ...,m}. Assume there exists κ > 0 such that k(x,x) ≤ κ, where213

k : X ×X → R is the kernel map associated with φ. Then the following inequality holds for all214

x ∈ X :215
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| f ∗(x) − f̄ ∗(x)| ≤ 2κ
λ

 ∑
{i:yi=+1}

I[i 6∈ R]
m+

+

∑
{ j:y j=−1}

I[ j 6∈ R]
m−


1
2

, (13)

where I[p] denotes the indicator function and is equal to 1 if p is true, 0 if p is false.216

We note, the difference in hypothesis decreases for larger regularization according to O
( 1
λ

)
217

and as we include more kernel function realizations in our representation. However, for the rank-218

ing loss, the bound decreases asymmetrically depending on whether we include a point from the219

positive or negative class. In particular, if the dataset is unbalanced with m−�m+, then 1
m+
� 1

m−
,220

and the reduction obtained from including a positive class basis is much greater than including221

one from the negative class. Hence, for a fixed number of kernel function realizations, the bound222

is minimized by first including bases corresponding to the positive or rare class.223

5. Computational Complexity Comparison between RankRC over SVM-Rank224

Using a smooth loss function in (??), we have the following RankRC problem in m+ variables,225

min
β∈Rm+

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`ε

(
βT Ki+ −βT K j+

)
+
λ

2
βT K++β . (14)

Here, Ki+ denotes ith row of K with column entries corresponding to only the positive class, and226

K++ ∈ Rm+×m+ is the square submatrix of K corresponding to the positive class entries. We also227

replace `h with the smooth approximation `ε. To solve (14) we can use several approaches, which228

are discussed below.229

5.1. Linearization230

Since K++ is a positive semi-definite matrix, it has an eigen-decomposition which can be ex-231

pressed in the form, K++ = UΛUT , with U being an orthonormal matrix (i.e. UTU = I) and Λ a232

diagonal matrix containing non-negative eigenvalues of K++. Let w = Λ
1
2UTβ, then233

β = UΛ†
1
2 w , (15)

where Λ† denotes the pseudoinverse of Λ. We can substitute (15) in (14) to obtain the following234

problem,235

min
w∈Rm+

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`ε

(
wT Λ†

1
2UT Ki+ − wT Λ†

1
2UT K j+

)
+
λ

2
‖w‖2

2 , (16)
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which is a problem in linear space. That is, Problem (16) is equivalent to Problem (4) with data236

points given by xi = Λ†
1
2UT Ki+ ∈ Rm+ , i = 1, ...,m. Therefore we can use the algorithm described237

in Chapelle and Keerthi [12] to solve the linear ranking problem in O(mm+ + m logm) = O(mm+)238

time. Including the cost of factoring K++, the total time is O(mm+ +m3
+). Once we solve for optimal239

w we can use (15) to obtain β for subsequent testing purposes. Also, since we only need entries240

{Ki j : i = 1, ...,m,y j = 1}, the method only requires O(mm+) space.241

5.2. Unconstrained Optimization242

We can also directly solve (14) using standard unconstrained optimization methods. Gradient243

only methods, such as steepest descent and nonlinear conjugate gradient do not require estima-244

tion of the Hessian. Although this makes each iteration much cheaper, convergence can be slow,245

especially near the solution. In contrast Hessian based algorithms, such as Newton’s method can246

obtain quadratic convergence near the solution, but each iteration can be expensive. In Newton’s247

method, the pth iterate is updated according to248

β(p+1) = β(p)
+ s ,

where the step, s, is obtained by minimizing the quadratic Taylor approximation around the current249

iterate β(p):250

min
s

sT g(p)
+

1
2

sT H(p)s , (17)

where H(p) and g(p) are the Hessian and gradient of the objective at β(p), respectively. Problem251

(17) has a closed form solution given by252

s = −

(
H(p)

)−1
g(p) .

Since H(p) is a m+×m+ matrix, this involves O(m3
+) cost in each iteration. To avoid this, we can253

use the truncated Newton method in which H(p)s = −g(p) is solved using linear conjugate gradient.254

Here, the Hessian is not computed explicitly and the method iteratively approximates the solution255

using Hessian-vector products. Since each iteration in the linear conjugate gradient algorithm256

leads to a descent direction, we can terminate early while still improving convergence.257

A drawback of (truncated) Newton’s method is that it can be sensitive to the initial point. If the258

initial point is not chosen close enough to the solution, the method can be slow to converge, or fail259

altogether. Therefore we consider a subspace-trust-region method, which combines the benefit of a260

truncated Newton step with steepest descent. In our tests, we found that the subspace-trust-region261

method converges with significantly fewer iterations than Newton’s method.262

The idea behind the trust-region method is to solve (17) while constraining the step, s, to a263

neighborhood around the current iterate, in which the approximation is trusted:264

min
s

1
2

sT H(p)s + sT g(p)

s.t. ||s||2 ≤∆(p) .
(18)
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The trust region radius, ∆(p), is adjusted at each iterate according to standard rules, for example265

it is decreased if the solution obtained is worse than the current iterate. Problem (18) can be266

solved accurately [e.g see 29], however, the solution uses the full eigen-decomposition of H(p).267

To avoid this computation, in the subspace-trust-region method, Problem (18) is restricted to a268

two-dimensional subspace spanned by the gradient, g(p), and an approximate Newton direction,269

s2, which can be obtained by solving H(p)s2 = −g(p) using linear conjugate gradient [30]. The idea270

behind this choice is to ensure global convergence (via steepest descent direction) and achieve271

fast local convergence (via the Newton step). Once the subspace has been computed, solving (18)272

costs O(1) time, since in the subspace the problem is only two-dimensional. The implementation273

we use is provided in Matlab’s optimization toolbox, fminunc/fmincon.274

5.2.1. Computing Gradient and Hessian-Vector Product275

We describe how we can compute the gradient and Hessian-vector product of Problem (14) ef-
ficiently. Let K·+ = [Ki j]i=1,...,m,y j=−1 ∈Rm×m+ denote the rectangular submatrix of K with columns
indexed by the positive class. Consider the expanded matrix

A = [Ki+ − K j+]i:yi=1, j:y j=−1 ∈ Rm+m−×m+ ,

consisting of the differences of rows in K·+ corresponding to all pairwise preferences. In our
computation we do not explicitly form matrix A, rather we note that A can be expressed as a sparse
matrix product:

A = DK·+,
where D ∈Rm+m−×m is a sparse matrix that encodes a pairwise preference. That is, if yi > y j, then276

there exists a row r in P such that Dri = 1,Dr j = −1 and the rest of the row is zero. Let Ar denote277

the rth row of A. Then the ranking loss expression in (14) can be written as,278

∑
{i:yi=+1}

∑
{ j:y j=−1}

`ε

(
βT Ki+ −βT K j+

)

=
m+m−∑
r=1

`ε

(
βT Ar

)
=

m+m−∑
r=1

I[r ∈ L]
(

1 − ε−βT Ar

)
+

m+m−∑
r=1

I[r ∈Q]
1
4ε

(
1 −βT Ar

)2
, (19)

where L = {r : βT Ar < 1 − 2ε} is the set of pairwise differences which are in the linear portion of279

`ε, and Q = {r : 1 − 2ε ≤ βT Ar < 1} is the set which fall in the quadratic part. Denote e ∈ Rm+m−280

as a vector of ones. Define eL ∈Rm+m− as a binary vector where eLr = 1 if r ∈L and eLr = 0 if r 6∈ L.281

Also define IQ ∈ Rm+m−×m+m− as a diagonal matrix, where IQrr = 1, if r ∈ Q, and IQrr = 0, if r 6∈ Q.282

Then (19) is equivalent to283
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(
eL
)T

((1 − ε)e − Aβ) +
1
4ε

(e − Aβ)T IQ (e − Aβ)

=
(

eL
)T

((1 − ε)e − PK·+β) +
1
4ε

(e − PK·+β)T IQ (e − PK·+β) .

Therefore the objective function in (14) can be expressed as284

F(β) ,
1

m+m−

[(
eL
)T

((1 − ε)e − PK·+β) +
1
4ε

(e − PK·+β)T IQ (e − PK·+β)
]

+
λ

2
βT K++β . (20)

We obtain the gradient by taking the derivative of (20) with respect to β:285

g ,
∂F
∂β

=
1

m+m−

[
−

(
eL
)T

PK·+ +
1
2ε

PK·+IQ (PK·+β − e)
]

+λK++β

=
1

m+m−

[
−

((
eL
)T

P
)

K·+ +
1
2ε

(
P
(

K·+
(

IQP
)

(K·+β)
)

− P
(

K·+
(

IQe
)))]

+λK++β .

(21)

In the last expression we have used brackets to emphasize the order of operations that leads to an286

efficient implementation and avoids computing A = PK·+. It can be verified that the time required287

is O(mm+).288

We obtain the Hessian by taking the derivative of (21) with respect to β:289

H ,
∂2F

∂β∂βT =
1

2εm+m−

(
PK·+IQPK·+

)
+λK++ .

Note the Hessian requires computing A. However, for the linear conjugate gradient method we290

only require computing Hs for some vector s. In this case, we can avoid computing A by using the291

following order of operations:292

Hs =
1

2εm+m−

(
P
(

K·+
(

IQP
)

(K·+s)
))

+λK++s .

The time required to compute Hs is also O(mm+).293

In the subspace-trust-region method we use a maximum of 25 conjugate gradient iterations.294

We found the solution usually converges in a constant number of trust region iterations. Since295

each iteration requires O(mm+) time, the total time required by the algorithm is O(mm+). Total296

space is also O(mm+).297

Finally, we note that we can slightly improve the time required to compute the gradient and298

Hessian-vector product by first sorting the values of K·+β or K·+s. Though this does not improve299

the big-O efficiency, it does reduce the constant factor. We refer the interested reader to [12] for300

details on a method which can be adapted for the nonlinear RankRC objective (14).301
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6. Experiments302

In this section we empirically compare RankRC to other methods on several unbalanced prob-303

lems. The following methods are compared:304

1. KNN: k-Nearest-Neighbors algorithm. The posterior probability is used as the ranking func-305

tion:306

P(y|x) =
1
k

∑
i∈K

I[yi = 1] ,

where K is the set of k nearest neighbors in the training dataset.307

2. SVM: This is the standard nonlinear SVM [23], in which the primal problem,308

min
w∈Rd

1
m

m∑
i=1

max
(
0,1 − yi(wTφ(xi) + b)

)
+
λ

2
‖w‖2

2 ,

is solved (in the dual) to obtain the decision function, f (x) = wTφ(x)+b =
∑m

i=1βik(xi,x)+b,309

with k(xi,x) = φ(xi)Tφ(x).310

3. SVM-W: Weighted SVM [23, 31] in which311

min
w∈Rd

1
m

m∑
i=1

ωi max
(
0,1 − yi(wTφ(xi) + b)

)
+
λ

2
‖w‖2

2 ,

is solved, with different weights associated with each class:312

ωi =

{
m

2m+
if yi = +1

m
2m−

if yi = −1 .

The idea is to penalize misclassification error of minority examples more heavily in order to313

reduce the bias towards majority examples.314

4. SVM-RUS: Randomly Under Sample the majority class examples (y = −1) to match the315

number of minority examples [9]. The resulting dataset, with 2m+ points, is used to train a316

standard SVM.317

5. SVM-SMT: Uses a Synthetic Minority Oversampling TEchnique (SMOTE) [10] in which318

the rare class is over-sampled by creating new synthetic rare class samples according to319

each rare class sample and its k nearest neighbors. Each new sample is generated in the320

direction of some or all of the nearest neighbors. We oversample to match the number of321

majority examples. The resulting dataset, with 2m− points, is used to train a standard SVM.322

6. RANK-SVM: Nonlinear RankSVM problem (6).323
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7. RANK-RND: We solve the RankSVM problem constrained to m+ randomly selected set of324

basis function, i.e. Problem (??).325

8. RANK-RC: We solve RankSVM constrained to the rare class representation, i.e. Problem326

(14).327

We use LIBSVM [32] to solve the SVM problems (2-5). LIBSVM is a popular and efficient328

implementation of the sequential minimal optimization algorithm [33]. We set cache size to 10GB329

to minimize cache misses; termination criteria and shrinking heuristics are used in their default330

settings. The ranking methods (6-8) are solved using the subspace-trust-region method as outlined331

in Section 5. Termination tolerance is set at 1e-6. For ranking methods, the memory available to332

store the kernel matrix is limited to 10GB. Experiments are performed on a Xeon E5620@2.4Ghz333

running Linux.334

All datasets are standardized to zero mean and unit variance before training. Since our fo-335

cus is on nonlinear kernels, for all SVM and ranking methods (2-8), we use a Gaussian kernel,336

k(u,v) = exp(−‖u − v‖2
2/σ

2) with σ2 = 1
m2

∑m
i, j=1 ‖xi − x j‖2

2. The penalty parameter λ is determined337

by cross-validation over values log2λ = [−20,−18, ...,8,10]. For KNN we cross-validate over338

k = [1,2, ...,dmin(100,
√

m)e].339

6.1. Simulated Data340

We simulate an unbalanced dataset in the following manner. Rare class instances are sampled341

from six multivariate normal distributions with equal probability. Their centers, µi, i = 1, ...,6, are342

randomly chosen within a unit cube. The majority class is sampled from
(6

2

)
= 15 multivariate343

normal distributions with equal probability. Their centers are chosen along lines connecting all344

combinations of two rare class centers, i.e. tµi + (1 − t)µ j, i > j. The parameter t ∈ [0,1] is used345

to roughly control the degree of class overlap. All covariances are chosen to be spherical, σ2I.346

Finally, the imbalance ratio, ρ = m+

m , is used to determine the number of samples drawn from347

each of the class conditional distributions. An example configuration in 2-dimensional space is348

shown in Figure 4. The resulting dataset contains multiple rare-class subconcepts that vary in349

discriminative structure.350

For our experiment we generate data in 5-dimensional space with σ = 0.5. We set t = 0.9,351

0.75, and 0.6 to produce datasets with high, medium and low overlap, respectively. The imbalance352

ratio, ρ, is varied from 10% to 40% in 10% increments for each t value. Thus we have a total of353

12 datasets. For each dataset we generate 1000 training points, 1000 validation points and 10000354

testing points. Results are averaged over 10 trials.355

Table 2 shows test AUC results using different methods. KNN does not perform as well as SVM356

and ranking methods. In general, ranking methods perform better than SVM based methods when357

there is greater overlap and higher imbalance (lower ρ). RANK-RND under performs in medium358

and low overlap datasets. In comparison, RANK-RC yields statistically similar performance as359

RANK-SVM across all datasets. Overall, both RANK-RC and RANK-SVM provide the best models.360

Figure 5 compares the empirical ranking loss function,361

R̂h =
1

m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`h
(

f (xi) − f (x j)
)
,
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Figure 4: Example configuration of simulated dataset in 2-dimensions with σ = 0.1 and t = 0.75.
The red, filled in circles show the locations of the six normal components for the rare class distri-
bution. The black, empty circles show the location of the 15 normal components for the majority
class distribution, whose centers lie along the dotted lines connecting all two rare class normal
components.

obtained by the ranking methods on four of the training and testing sets as λ is varied. We observe362

that the difference between RANK-SVM and the restricted basis models (RANK-RND and RANK-363

RC) decreases as λ is increased. Since restricting basis functions also limits the complexity of364

the model, the test loss of RANK-RND and RANK-RC is lower than that of RANK-SVM for small365

values of λ. However, RANK-RND is unable to achieve the optimal test loss levels at moderate366

values of λ (more noticeably in Figures 5c and 5d). In contrast, RANK-RC does not forfeit any test367

performance compared to RANK-SVM, while providing additional robustness as λ is reduced.368

6.2. Real Datasets369

In this section we compare methods on several unbalanced real datasets obtained from various370

sources. Table 3 lists the datasets along with their characteristics. For each dataset, three-quarters371

of the observations are used for training and the remaining one-quarter for out-of-sample testing.372

Results are averaged over 20 stratified random splits of the data. The model parameter (λ or k) is373

tuned by running 10-fold cross-validation on the training set for each split.374

Table 4 shows the mean test AUC score with standard error for each model. Overall, RANK-375

SVM and RANK-RC yield the best performing models with statistically similar results. RANK-RND,376

on the other hand, under performs on some datasets, indicating that a random basis set is not as377

effective as the rare class basis on unbalanced problems. SVM based methods generally do not378

perform as well as ranking methods, except when there appears to be more discriminative patterns379

in the data.380
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Figure 5: Comparison of empirical train and test ranking loss obtained by the ranking methods on
four of the simulated datasets as λ is varied.
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Table 5 compares the number of support vectors used by the SVM and ranking models. RANK-381

SVM uses more support vectors than SVM based models. It can use even more support vectors than382

SVM-SMT, which is trained on an enlarged dataset almost twice the size. This suggests that training383

RANK-SVM using a working-set type algorithm, which only tracks active support vectors (e.g. as384

proposed in [24] for standard SVMs), would still run costly in time and space. In comparison,385

RANK-RND and RANK-RC use significantly fewer support vectors. Moreover, with RANK-RC, test386

performance is also not compromised.387

6.3. Intrusion Detection388

In this section we use the KDD Cup 1999 dataset [36] to evaluate a large-scale unbalanced389

problem. The objective is to detect network intrusion by distinguishing between legitimate (nor-390

mal) and illegitimate (attack) connections to a computer network. The dataset is a collection of391

simulated raw TCP dump data over a period of nine weeks on a local area network. The first seven392

weeks of data is used for training and the last two for test, providing a total of 4 898 431 training393

observations and 311 029 test cases. We processed the data to remove duplicate entries (as done in394

[37]) resulting in 1 074 975 training observations and 77 286 test cases. Each observation contains395

41 features, three of which are categorical and the rest numerical. The three categorical features396

are protocol (3 categories), service (70 categories) and flag (11 categories). We represent proto-397

col using three binary features, where each feature is an indicator for one of the three categories.398

Service and flag categories are replaced by the frequency in the training sample (i.e. probability)399

corresponding to the event of observing an attack given the category is present. Thus we obtain a400

total of 43 features. Finally, as done for all datasets, we standardize each feature to zero mean and401

unit variance.402

The attack types are grouped in four categories, DOS (Denial of Service), Probing (Surveil-403

lance, e.g. port scanning), U2R (user to root), R2L (remote to local). Table 6 shows the distribution404

of attack types in the training and test sets. Together, the U2R and R2L attacks constitute 4.0%405

of the test dataset, which is a substantial increase compared to the training set, but still a small406

fraction. Poor results have been reported in literature for identifying the U2R and R2L attacks407

[38]. In this experiment, we focus on identifying these attack types by forming a binary classifi-408

cation problem with the positive class representing either a U2R or R2L attack, and the negative409

class representing all other connection types. Thus the final training set is highly skewed with only410

0.098% positive instances.411

We train using 5%, 10%, 25%, 50%, and 75% of the training data. The remaining training412

data is used for validation. We are unable to train RANK-SVM, even with just 5% of the data413

(53 749 samples), since the kernel matrix is too large to store in memory (>10GB). Clearly, this414

is an example where a large-scale solution is necessary to solve the ranking problem. We do not415

train SVM-SMT due to the large number of samples as well. We are able to train SVM-W using up416

to 50% of the data. With more samples SVM-W does not converge, likely due to the large number417

of support vectors which do not fit in the cache.418

Figure 6a shows test AUC results obtained by different methods as training data is increased.419

We observe that SVM and SVM-RUS perform poorly. RANK-RC, RANK-RND and SVM-W produce420

better results, with RANK-RC performing the best. Figures 6b and 6c compare training time and421

number of support vectors, respectively, as training data is increased. SVM and SVM-RUS train in422
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Name Source Subject
Features Samples

Original Derived (d) m m+ ρ

Abalone19 UCI Life 1N,7C 10 4177 32 0.8%

Mammograph [34] Life 6C 6 11183 260 2.3%

Ozone UCI Environment 72C 72 2536 73 2.9%

YeastME2 UCI Life 8C 8 1484 51 3.4%

Wine4 UCI Chemistry 11C 11 4898 183 3.7%

Oil [35] Environment 49C 49 937 41 4.4%

SolarM0 UCI Nature 10N 32 1389 68 4.9%

Coil KDD Business 85C 85 9822 586 6.0%

Thyroid UCI Life 21N,7C 52 3772 231 6.1%

Libras UCI Physics 90C 90 360 24 6.7%

Scene LibSVM Nature 294C 294 2407 177 7.4%

YeastML8 LibSVM Life 103C 103 2417 178 7.4%

Crime UCI Economics 122C 100 1994 150 7.5%

Vowel0 Keel Computer 10C 10 989 90 9.1%

Euthyroid UCI Life 18N,7C 42 3163 293 9.3%

Abalone7 UCI Life 1N,7C 10 4177 391 9.4%

Satellite UCI Nature 36C 36 6435 626 9.7%

Page0 Keel Computer 10C 10 5472 559 10.2%

Ecoli UCI Life 7C 7 336 35 10.4%

Contra2 Keel Life 9C 9 1473 333 22.6%

Table 3: List of datasets and their characteristics that we use to evaluate methods. Under origi-
nal features, ’N’ is used to denote number of nominal features, ’C’, is used to denote number of
continuous features. We derive d features by converting nominal features to an indicator represen-
tation and use continuous features as is. Under samples, m is the total number of observations, m+

is the number of rare class observations, and ρ = m+

m is the percentage of rare class examples.
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Figure 6: Comparison of (a) test AUC score, (b) training time in seconds, and (c) number of
support vectors, for the intrusion detection problem as percent of data used for training is increased
from 5% to 75%. In our experiment setup, we were unable to train RANK-SVM due to the large
size of the dataset. Also, for more than 50% of data, SVM-W did not converge after more than 72
hours of training.
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reasonable time, though they do not produce good models. On the other hand, SVM-W quickly423

becomes very expensive. RANK-RC and RANK-RND scale well, while able to produce effective424

models. RANK-RC and RANK-RND also use significantly fewer support vectors than SVM-W.425

7. Conclusion426

In this paper, we use a ranking loss function to tackle the problem of learning from unbal-427

anced datasets. Minimizing biclass ranking loss is equivalent to maximizing the AUC measure,428

which overcomes the inadequacies of accuracy, used by conventional classification algorithms.429

The resulting regularized loss minimization problem corresponds to a biclass RankSVM problem.430

We modify RankSVM to take advantage of the rare class situation by restricting the solution to a431

linear combination of rare class kernel functions (RankRC). This allows us to solve the nonlinear432

ranking problem in O(mm+) time and O(mm+) space, thus enabling us to solve problems which are433

too large for kernel RankSVM. We provided heuristic and theoretical justification for this choice434

and experimentally illustrated the effectiveness of RankRC, in both test performance and training435

time.436

Below we list a few extensions/variants one may consider using the rare class representation:437

1. Regularization: In problem (14) we can use an `1-regularizer, ‖β‖1, instead of βT K++β.438

This would lead to sparser solutions [39] and could be solved using coordinate descent439

methods [40].440

2. Loss function: We can replace the loss function with other variants of ranking loss. The441

AUC concentrates uniformly across all threshold levels. We can use weighted AUC [41] or442

the p-norm push [42] to emphasize specific portions of the AUC curve. Also, we can use443

list based ranking methods to optimize other criteria such as F1-score or Precision/Recall444

breakeven point [43]. The rare-class representation allows us to learn a nonlinear function445

for unbalanced datasets with more complex loss functions, in reasonable time and space.446

3. Stochastic Learning: For very large datasets, the m×m+ kernel submatrix may be too large447

to fit in memory. In this case, we can store K++ ∈ Rm+×m+ and cycle (randomly) through448

majority class examples updating the β ∈Rm+ vector via gradient descent using an adaptive449

learning rate [44]. Unlike standard stochastic gradient descent, in each iteration we use the450

full set of minority examples and a single (or small subset) of majority samples to perform451

the update. This should lead to faster convergence while using only O(m+m+) space.452

In summary, the rare class representation offers significant benefits to learn nonlinear models453

for large-scale rare class problems.454
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Training Test

Normal 812808 75.6% 47913 62.0%
DOS 247266 23.0% 23568 30.5%
Probing 13850 1.3% 2677 3.5%
U2R 52 0.005% 215 0.278%
R2L 999 0.093% 2913 3.769%

Total 1074975 100% 77286 100%

Table 6: Distribution of connection types in training and test sets for the intrusion detection prob-
lem.
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